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In a variety of applications, especially in large scale dynamic systems, the mechanization
of different vibration control elements in different locations would be decided by limitations
placed on the modal vibration of the system and the inherent dynamic coupling between
its modes. Also, the quality of vibration control to the economy of producing the whole
system would be another trade-off leading to a mix of passive, active and semi-active
vibration control elements in one system. This term active is limited to externally powered
vibration control inputs and the term semi-active is limited to rapidly switched dampers.
In this article, an optimal preview control method is developed for application to dynamic
systems having active and semi-active vibration control elements mechanized at different
locations in one system. The system is then a piecewise (bilinear) controller in which two
independent sets of control inputs appear additively and multiplicatively. Calculus of
variations along with the Hamiltonian approach are employed for the derivation of this
method. In essence, it requires the active elements to be ideal force generators and the
switched dampers to have the property of on-line variation of the damping characteristics
to pre-determined limits. As the dampers switch during operation the whole system’s
structure differs, and then values of the active forcing inputs are adapted to match these
rapid changes. Strictly speaking, each rapidly switched damper has pre-known upper and
lower damping levels and it can take on any in-between value. This in-between value is to
be determined by the method as long as the damper tracks a pre-known fully active control
demand. In every damping state of each semi-active damper the method provides the
optimal matching values of the active forcing inputs. The method is shown to have the
feature of solving simple standard matrix equations to obtain closed form solutions. A
comprehensive 9-DOF tractor semi-trailer model is used to demonstrate the effectiveness
of the method. Time domain predictions are made to compare performance of ride and
tyre-to-road contact in the model for the presented method with those of some other active
and semi-active suspension designs.
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1. INTRODUCTION

Manufacturers have begun seriously to apply active and semi-active suspensions because
of their effective control of vibrations in many industrial applications. Doubtless, the
automobile industry is one of the most important areas of application of these suspensions,
but the term suspension cannot be confined in any way to the vehicle industry because
so many engineering applications are using suspensions. Active suspensions can play a very
vital role in controlling vehicle vibrations to limits unreachable by any other kind of
suspensions [1–3]. On the other hand, semi-active suspensions can be a good compromise
between high performance capabilities with complexity for active suspensions and low
performance capabilities with simplicity for passive suspensions.
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The topic of active and semi-active suspensions has been subject to extensive studies by
many researchers in the past three decades [1]. An active suspension controller requires
a fast actuation of vibration control force by using an external power supply, while
semi-active control strategies are based on simpler signal processing and a very low amount
of power supply as compared to active ones [4, 5]. Optimization of active suspensions by
applying methods of modern control theory has been reported in references [2, 3].
Semi-active suspensions are strongly non-linear systems due to rapid switching of damping
from one level to another in order to operate continuously the semi-active damper in an
energy dissipation mode. This job is often done by varying the cross-sectional area of the
oil flow of these dampers. Therefore, performance optimization of them is not an easy task,
but many attempts have been made [6–8].

The idea of having pre-knowledge of road roughness by using sensors installed in
the front of a vehicle is known as preview (action) control. This idea has been
originally developed by Bender [9]. Preview active suspensions are capable of
providing performance superior to that of all the other types of modern suspensions [10].
In addition, they can significantly resolve the inevitable conflict between the many
performance requirements of vehicle suspensions [11]. Optimal semi-active control policies
with preview have been developed for application to vehicle suspensions on simple
and complicated models [13–16]. In these publications, the authors have shown that the
preview action improves, to a great extent, the performance measures of semi-active
suspensions.

In this paper, a method for preview vibration control is presented for application to
systems having both active (forcing) and semi-active rapidly-switched elements installed
at different positions. Any combination of passive, active and semi-active isolation
elements could exist in one system. Since the passive elements have constant parameters,
the method developed here is to find optimum values of the active forces and the
semi-active damping rates to satisfy the requirements of a generalized quadratic
performance index. The method also gives their optimum values with/without the preview
action. The model used for application is a 9-DOF commercial vehicle.

2. SYSTEM MODEL

The model considered in this study is shown in Figure 1. It is a 9-DOF tractor
semi-trailer vehicle. Obviously, it is a two-dimensional model in the vertical and
longitudinal planes. The detailed mathematical description of this model and its equations
of motion have been reported in reference [17], for the case in which can be regarded as
a linear lumped parameter model. Also, values of the vehicle parameters have been
tabulated in references [17–19]. Many (assumptions) degrees of idealization are made in
order to determine the vehicle degrees of freedom; the most important ones are (1) it travels
at constant speed on an uneven road, (2) the tractor, the cab and the semi-trailer are
perfectly rigid, (3) the semi-trailer and the cab are allowed to make translational motion,
(4) the passive spring and damper elements are linear, and (5) the forcing inputs are ideal,
i.e. the actuator nonlinearities are ignored. These assumptions lead to a 9-DOF linear
vibratory motion which includes bouncing and pitching motions of both the cab and the
tractor centres of gravity, yc , uc , yt and ut , pitching motion of the semitrailer centre of
gravity, uS , and the bouncing motions of each wheel-axle assembly, y1, y2, y3 and y4. Note
here that xc , xs and xt are three dependent longitudinal motions of the cab, the semi-trailer
and the tractor, respectively. The dimensions of the vehicle in the longitudinal direction
are denoted by b1, b2, . . . , b9 while the dimensions in the vertical direction are denoted by
h1, h2, and h3. The forcing inputs are six, u1 and u2 suspend the tractor, the cab and the
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Figure 1. A 9-DOF tractor semitrailer vehicle model [17, 18].

semi-trailer, u3 and u4 suspend the semi-trailer and u5 and u6 suspend the cab. The four
road inputs are w1, w2, w3 and w4.

3. SYSTEM REPRESENTATION

In this section the nine second-order differential equations are represented in a state
space form which is more suitable for the problem. The state space representation leads
to eighteen first-order differential equations assembled in matrix form as

ẋ=Ax+Bf+Dw, (1)

where x is a state variable vector, f is a forcing input vector and w is a vector of road
excitations imparted at the four wheels. These vectors are defined as follows:

x=[yc , uc , yt , ut , us , y1, y2, y3, y4, ẏc, u� c , ẏt , u� t , u� s , ẏ1, ẏ2, ẏ3, ẏ4],

f=[u1, u2, u3, u4, u5, u6], w=[w1, w2, w3, w4]'.

The matrices A, B and D are all of constant coefficients resulting from the state space
formulation. For the sake of convenience for the optimization problem of this study the
vector of forcing inputs, f, is divided into two sub-vectors; the first one is f=[ug]', where
u=[u1, u2, u3, u4]' and the second one is g=[u5, u6]'= [g1, g2]'. If one partitions the matrix
B in equation (1) such that B=[B1, B2], where B1 is a sub-vector containing only the
columns of B corresponding to the forcing input vector u, and B2 is a sub-vector containing
only the columns of B corresponding to the forcing input vector g, the state space form
of equation (1) can be reproduced in the form

ẋ=Ax+B1u+B2g+Dw. (2)

In the case of semi-active dampers for suspending the vehicle cab, the elements of the
forcing input vector, g, can be extracted from the model dynamic equations as

g1 = n1(t)(+ẏc − b8u� c − ẏt +(b7 + b8)u� t ), g2 = n2(t)(+ẏc + b9u� c − ẏt +(b7 − b9)u� t ),

(3)
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where n1(t) and n2(t) are rapidly changing damping coefficients in a range of predetermined
values

nk min E nk E nk max, k=1, 2, . . . , nn , (4)

where nn is the number of (semi-active) rapidly switched dampers; equal to two in this
study, and a condition of 0E nk min Q nk max must be satisfied. Note that nk min should be
greater than zero for the damper to be viscous. The forcing input vector g is then replaced
by

g=(diag n)Vx, (5)

where,

V=$0 0 0 0 0 0 0 0 0 +1 −b8 −1 +(b7 + b8) 0 0 0 0 0
0 0 0 0 0 0 0 0 0 +1 +b9 −1 +(b7 − b9) 0 0 0 0 0%,

diag n=$n1(t)
0

0
n2(t)%.

From equations (2) and (5), it follows that

ẋ=Ax+B1u+B2(diag n)Vx+Dw. (6)

The last equation is a bilinear state equation because of the product of the state vector
x and the semi-active control elements n1(t) and n2(t) in the third term of the right-hand
side.

In the design of automobile suspensions the designer is often in a hard situation to decide
how much preference is to be given to each performance measure. In fact, the most
important measures of any vehicle suspension are the sprung mass accelerations taken in
the bounce, pitch and roll directions, the suspension deflection which must be limited
because of space limitations due to the modern compact designs of vehicles, and the tire
deflection that plays a very vital role in the vehicle safety and handling. In order to meet
the above performance qualities, the following performance index is chosen for the current
problem, as presented in reference [19]:
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Here E[.] denotes expected values or variances, ac1 is the cab vertical acceleration, ac2 is
the cab pitch acceleration, ati is the accelerations obtained at three points, tractor centre
of gravity and both ends of the tractor frame, asi is the semi-trailer accelerations obtained
at three points, semi-trailer centre of gravity and both ends of the semi-trailer frame, Dci

are cab suspension deflections, Dti are tractor suspension deflections, Dsi are semi-trailer
suspension deflections, and Dwi are tyre deflections. Also, a1 · · · a4, r1 · · · r4, gi (i=1 · · · 6),
and hi , (i=1, 2) are weighting factors which reflect designer’s preferences.
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The performance index of equation (7), after simple algebraic manipulation with the
system equations of motion, can be recast in a more convenient form for the problem as
follows:

J= lim
T:a

1
2T g

T

0

[x'Q1x+2x'S1u+ u'R1u+2x'S2(diag n)]Vx+ x'V'(diag n)R2(diag n)Vx

+ 2u'Quv (diag n)Vx+2x'Q5w+2u'Q3w+2x'V'(diag n)Q4w+w'Q2w] dt. (8)

This last performance index is a weighted sum of variances of state variables, x, active
forcing (control) inputs, u, semi-active damping forces, diag n.V, and road excitation
functions, w. It also minimizes the dynamic coupling between the state variables and (i)
the control inputs, (ii) the semi-active inputs, and (iii) the road inputs. In addition, it
minimizes the dynamic coupling between the active control inputs, u, and the semi-active
control inputs, diag n.V, and also minimizes the dynamic coupling between both the active
and semi-active control inputs and the road inputs. The matrices Q1, Q2, Q3, Q4, Q5, Quv ,
R1, R2, S1 and S2 are all constant weighting matrices extracted by the manipulation of
equation (7) and the model equations of motion. Since w appears here in the performance
index, we assume instantaneous measurement or reconstruction of the road input. This will
allow a feedforward part in the control input which reduces the current disturbances [15].

4. PREVIEW FULLY ACTIVE SUSPENSION

In this study a perfect preview of road irregularities is assumed. This requires a perfect
sensing device to be installed in the front of the vehicle. The theory developed here is based
on an assumption of sufficiently long preview time. A compromise is seeked by performing
all the situations at a vehicle running speed of 15 m/s with preview time of 0·15 s. Basically,
the theory requires the finite knowledge of road roughness ahead of the front wheel for
s=[t, t+ tp ], where tp a 0 is the preview time, meaning that a sensor is supposed to
measure a road roughness segment lp =Utp , where U is the vehicle traveling speed. The
sensed distance ahead of the vehicle is determined at the end by the overhang of the vehicle
from the front axle. It is well known [10] that the pitch motion of both the tractor and
the cab, uc and ut , should be compensated by keeping the absolute inclination of the sensor
constant with respect to the road surface. This is quite important, since view angle
variations change the previewed distance. This is one of the many reasons which have not
allowed the use of an operational preview system.

 1
Consider the optimization of the system described by equation (2) and the performance

index of equation (8) with g replacing (diag n)Vx, and no explicit constraints of equation
(4) are considered. If one introduces the notations

An =[A−B1(R1 −QuvR−1
2 Q'uv )−1(S'1 −QuvR−1

2 S'2 )

− B2(R2 −Q'uvR−1
1 Quv )−1(S'2 −Q'uvR−1

2 S'1 )],

Qn =[Q1 −S1(R1 −QuvR−1
2 Q'uv )−1(S'1 −QuvR−1

2 S'2 )

− S2(R2 −Q'uvR−1
1 Quv )−1(S'2 −Q'uvR−1

2 S'1 )],

Qd =[D−B1(R1 −QuvR−1
2 Q'uv )−1(Q3 −QuvR−1

2 Q4)

− B2(R2 −Q'uvR−1
1 Quv )−1(Q4 −Q'uvR−1

2 Q3)],
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Qs =[Q5 −S1(R1 −QuvR−1
2 Q'uv )−1(Q3 −QuvR−1

2 Q4)

− S2(R2 −Q'uvR−1
1 Quv )−1(Q4 −Q'uvR−1

2 Q3)],

Rn =[B1(R1 −QuvR−1
2 Q'uv )−1(B'1 −QuvR−1

2 B'2 )

+ B2(R2 −Q'uvR−1
1 Quv )−1(B'2 −Q'uvR−1

2 B'1 )],

and if either (An , B1) or (B1, B2) is a stabilizable pair [22] and (An , Q1/2
n ) is detectable [15],

the control forces are then given by

uo (t)=−(R1 −QuvR−1
2 Q'uv )−1[[(S'1 −QuvR−1

2 S'2 )+ (B'1 −QuvR−1
2 B'2 )Pn ]x(t)

+ (B'1 −QuvR−1
2 B'2 )rn (t)+ (Q3 −QuvR−1

2 Q4)w(t)], (9)

go (t)=−(R2 −Q'uvR−1
1 Quv )−1[[(S'2 −Q'uvR−1

2 S'1 )+ (B'2 −Q'uvR−1
1 B'1 )Pn ]x(t)

+ (B'2 −Q'uvR−1
1 B'1 )rn (t)+ (Q4 −Q'uvR−1

1 Q3)w(t)], (10)

where Pn is a non-negative definite solution of the algebraic Riccati equation

PnAn +A'nPn −PnRnPn +Qn =0, (11)

and the vector rn (t) is given by

O1(tprv − s)w1 (t+ s)

O2(tprv + t1 − s)w1(t+ s+ t1)
G
G

G

G

G

K

k

G
G

G

G

G

L

l

rn (t)=g
tprv

0

+ t1 + t2 + t3 eAcnsQw
O3(tprv + t1 + t2 − s)w1(t+ s− t1 − t2)

ds,

w1(t+ s− t1 − t2 − t3)

(12)

where t1, t2 and t3 are time delays between road inputs taken between every two successive
tires. O1, O2 and O3 are Heaviside (unit step) functions such that; for example,

O1(tprv − s)=610 for sE tprv ,
for sa tprv .

(13)

The proof of Theorem 1 is a minor modification of Case I of the proof of Theorem 2 in
the Appendix when the inequality constrained are not considered. The closed loop matrix
Acn =(An −RnPn ) is to be asymptotically stable due to the non-negative definiteness of the
Riccati solution in equation (11). Note here that the control forces of equations (9) and
(10) consist of three main parts: (1) the first part is just like the one known in the LQ
problem; (2) a preview part in which rn (t) appears, and which uses the future road
information; (3) one which uses the current road measurements.

To this end, the terms ‘‘stabilize’’ and ‘‘detectable’’ have to be explained. In general,
stabilizability means that the unstable modes in the control matrix A in equation (2) can
be stabilized by the feedback action of the forcing inputs. Thus, the forcing inputs can
derive the system from a given initial state to another state in a finite time. Detectability
in the ability to determine the state of a system from certain output observations or
measurements. Further reading about the stabilizability and the detectability of the linear
and bilinear control systems can be found in reference [22].
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5. PREVIEW HYBRID SUSPENSION

Now, one can return to the bilinear control system of equation (6). This system has
independent additive and multiplicative control inputs. The additive control inputs,
u1, . . . , u4, are scalar and magnitude-unconstrained, but the multiplicative control inputs,
n1 and n2, are scalar and magnitude-constrained. There are two shock (semi-active)
absorbers of variable damping coefficients n1 and n2 for suspending the cab and four
fully-active actuating (inputs) forces, u1, . . . , u4, two of them for suspending the tractor
and the other two are for suspending the semi-trailer. The damping coefficients n1 and n2

are to be continuously varied to ensure that the semi-active damping forces acts as closely
as possible to fully active forces g1 and g2 given by equation (10). In other words, these
optimum fully active forces g1 and g2 are to be replaced by semi-active damping forces of
optimum time-varying coefficients n1 and n2 with limiting bounds as in equation (4). In all
the damping states the fully active control forces are to be adapted all the time according
to the updated value of the damping coefficients.

 2
Consider the minimization of the bilinear control system described by equation (6) with

respect to the performance criterion (8) under the system of inequality constraints (4). If
one introduces the notation

Am (n)= [A−B1(R1 −QuvR−1
2 Q'uv )−1((S'1 −QuvR−1

2 S'2 )−QuvR−1
2 (S'2 −Q'uvR−1

2 S'1 ))

+ (B2 −B1R−1
1 Quv ) diag n*.V],

Qm (n)= [Q1 −S1(R1 −QuvR−1
2 Q'uv )−1((S'1 −QuvR−1

2 S'2 )−QuvR−1
2 (S'2 −Q'uvR−1

2 S'1 ))

+ (S2 −S1R−1
1 Quv ) diag n*.V+V' diag n*(S'2 −Q'uvR−1

1 S'1 )

+ V' diag n*(R2 −Q'uvR−1
1 Quv ) diag n*.V],

Qr =[D−B1(R1 −QuvR−1
2 Q'uv )−1((Q3 −QuvR−1

2 Q4)−QuvR−1
2 (Q4 −Q'uvR−1

2 Q3))],

Qu (n)= [Q5 −S1(R1 −QuvR−1
2 Q'uv )−1((Q3 −QuvR−1

2 Q4)−QuvR−1
2 (Q4 −Q'uvR−1

1 Q3))

+ V' diag n*(Q4 −Q'uvR−1
1 Q3)],

Rm =[B1(R1 −QuvR−1
2 Q'uv )−1((B'1 −QuvR−1

2 B'2 )+QuvR−1
2 (B'2 −Q'uvR−1

2 B'1 ))],

and if either (Am (n), B1) or (B1, B2) is a stabilizable pair and (Am (n), Q1/2
m ) is detectable, the

fully and semi-active control forces are then given by

u*o (t)= uo (n*k (t)), (14)

n*k (t)= 8nk min if
nk max if

gok (t)/xk (t)

gok (t)xk (t)E nk minx2
k (t)

gok (t)xk (t)e nk maxx2
k (t)

otherwise
(15)

for k=1, 2, . . . , nn , where goi denotes components of the control vector go which is given
by equation (10), xk is the relative velocity variable across the kth semi-active damper, and
uo (n*k (t)) is the optimal fully-active force calculated as a function of the current damping
coefficients of the semi-active dampers,

uo (n*k (t))=−(R1 −QuvR−1
2 Q'uv )−1[[(S'1 −QuvR−1

2 S'2 )+ (B'1 −QuvR−1
2 B'2 )Pm ]x(t)

+ (B'1 −QuvR−1
2 B'2 )rm (t)+ (Q3 −QuvR−1

2 Q4)w(t)]. (16)
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Figure 2. Time response of optimized suspension control systems at vehicle speed of 15 m/s and preview time
of 0·15 s. ——, Active; — —, active with preview; ——————, hybrid with preview.

This requires the solution of the time-invariant matrix Riccati equation

PmAm (n)+A'm (n)Pm −PmRmPm +Qm (n)=0, (17)

and the closed loop matrix, Acm (n)= (Am (n)−RmPm ), is to be asymptotically stable due
to the non-negative definiteness of the Riccati solution in equation (17) and the positiveness
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of the semi-active damping coefficients. The calculation of the vector rm (t) is like the
calculation of the vector rn (t) in equation (12) except that Acm (n) replaces Acn . In the case
when the last of the conditions of equation (15) is satisfied for all the constraints, the
semi-active control force is just like the one generated by the fully active actuator given
by equation (10). Otherwise, the semi-active damping force for each damper is set to one
of its limiting values. Strictly speaking, for this study, one of the two dampers could be

Figure 3. Time response of optimized suspension control systems at vehicle speed of 15 m/s and preview time
of 0·15 s. ——, Semi-active; — —, semi-active with preview; ——————, , hybrid with preview.
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T 1

Comparison of various suspension designs in terms of the r.m.s. response
measures

yc uc y1 y4

System (m/s2) (rad/s2) (m) (m)

Passive 0·41 0·221 0·0038 0·0038
Active 0·21 0·07 0·0030 0·0035
Active with preview 0·31 0·099 0·0021 0·0034
Semi-active 0·37 0·15 0·0032 0·0032
Semi-active with preview 0·34 0·17 0·0021 0·0032
Hybrid with preview 0·33 0·12 0·0018 0·0034

set to either maximum or minimum limiting value while the other is satisfying the
inequality constraints. The proof of Theorem 2 is given in the Appendix.

6. RESULTS AND DISCUSSIONS

A time-domain simulation process was performed by using the fifth-order Runge–Kutta
method in order to explore the performance features of the control method presented in
this paper relative to those of some other control methods. All the simulation results were
obtained by considering ideal semi-active dampers. By an ‘‘ideal’’ damper is meant a
viscous damper with a linear force–velocity curve and an instantaneous response in
switching from one damping state to another. Of course, in practice, there are hardware
limitations which affect the operation of semi-active dampers such as the off-state damping
ratio, and the switching time required for the control valve to go from completely open
to completely closed. The author in reference [23] showed that the off-state damping ratio
should be Q0·2, and the response of the control valve should be less than approx. 0·014 s.

The vehicle response to a deterministic road input in the form of a hole followed by
a bump is detected. The mathematical description of this type of road input is

w(t)= 8−0·025(1−cos 20p(t−0·15)) for t$[0·15, 0·25]
+0·025(1−cos 20p(t−0·15)) for t$[0·35, 0·45]

0 otherwise

A preview time of 0·15 s at a vehicle travel speed of 15 m/s is considered. This means that
if the overhung is 1·25 m the previewed distance ahead of the vehicle will be 1 m. The
weighting parameters that appear in the performance index of equation (7) are taken as
follows: a1 =5×102, a2 =3×102, a3 = a4 =0, r1 =1×105, r2 =1×105, r3 =1×105,
r2 =1×107, h1 = h1 =1×103, and g1 = g2 = g3 = g4 =1×10−5. The response measures

T 2

Effect of the weighting parameters a1 and a2 on the operation of the hybrid
controller

yc uc y1 y4

Weighting parameters a1 and a2 (m/s2) (rad/s2) (m) (m)

a1 =500, a2 =300 0·33 0·12 0·0018 0·0034
a1 =750, a2 =350 0·26 0·009 0·0027 0·0038
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of the vehicle model are shown in Figure 2. In this figure the performance of the suggested
controller versus fully active and fully active with preview is shown. Note here that the
equations of the fully active controller can be directly extracted from equations (9) and
(10) by setting rn (t)=0: i.e. no preview action is considered. Also, a comparison with
semi-active and semi-active with preview suspensions is shown in Figure 3.

From Figure 2, it is obvious that the suggested (hybrid) control method provides less
performance capabilities with respect to the cab and pitch accelerations. This agrees with
the results obtained in reference [13] because short preview times like 0·15 s allow
improvement in the tyre-to-road holding property rather than the ride quality. Thus the
hybrid controller (see Figure 2) provides performance features even better than the active
system with preview for the first tyre. It provides a good compromise for the designer if
it is decided to reduce the overall cost by replacing broad-band actuators by rapidly
switched dampers. It is worth noting that the designer can give preference to the cab
isolation by using broad-band actuators for suspending the cab and rapidly switched
dampers for suspending both the tractor and the trailer.

Figure 3 shows that the suggested hybrid control method provides better isolation
capabilities than the semi-active system and semi-active active with preview system from
both the ride quality and the tyre-to-road contact forces. This fact holds true except for
the fourth tyre where the semi-active with preview system provides lower response peaks
than the others. This is also clear from the r.m.s. values in Table 1. These r.m.s. values
are obtained by the simulation of system response to a white noise road input for
sufficiently long time. Note here that the results obtained here belong to the selected set
of weighting parameters at the beginning of this section, meaning that the designer has
the freedom to choose these parameters in order to match his own preferences. For
example, from Table 2, changing the values of the weighting parameters a1 and a2 from
500 and 300 to 750 and 350, respectively, will lead to a noticeable improvement in the ride
quality measures yc and uc on the expense of worsening the tyre-to-road property which
is indicated by y1 and y4.

Most importantly, the method presented in this paper is based on the assumption of
full state measurements which is hard to meet in many applications. An estimation
approach could be developed for knowing the state variables, which are hard to measure.

7. CONCLUSION

A preview control method for vibration suppression in mechanical systems has been
presented. It is shown to have the feature of solving standard matrix equations in order
to obtain closed form solutions. It is specifically developed for the optimization of systems
having ideal broad-band actuators and ( semi-active) rapidly switched dampers working
altogether at the same time in one system. The optimal fully active forces are always
obtained according to the damping state of the semi-active dampers. The application to
a tractor semi-trailer vehicle has shown the effectiveness of the method as compared to
that of others.
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APPENDIX: PROOF OF THEOREM 2

This proof is based on the many derivations by using calculus of variations as in
references [14, 15, 21]. The statement of the optimization problem is to obtain the
minimum value of the performance criterion of equation (8) subject to the system dynamic
constraint of equation (6) and the explicit constraints of equation (4). Note here that each
of the constraints (4) can be divided into two inequality constraints as follows:

nk + nk min E 0, nk − nkmax E 0, k=1, 2, . . . , nn . (A1)
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The Hamiltonian approach for such a problem is given by

H=0·5x'Q1x+ x'S1u+0·5u'R1u+ x'S2(diag n)Vx+0·5x'n'(diag n)R2(diag n)Vx

+ u'Quv (diag n)Vx+ x'Q5w+ u'Q3w+ x'V'(diag n)Q4w+0·5w'Q2w

+ l'[Ax+B1u+B2(diag n)Vx+Dw]+ l'k (nmin − n)+ q'k (n− nmax), (A2)

where the vector l and the scalars lk and qk are Lagrange multipliers which weight the
dynamic and inequality constraints, respectively. The necessary conditions for optimality
are [21] Hu = 1H/1u=0, Hv = 1H/1v=0, 1H/1x=−l� , with l(T)=0, and either Hlk =0
or Hqk =0, k=1, 2, . . . , nn when the kth constraint of the set (A1) is active. The first three
conditions lead to

1H
1u

=0=S'1x+R1u+Quv (diag n)Vx+Q3w+B'1l, (A3)

1H
1n

=0=diag (Vx)S'2x+diag (Vx)R2 diag (Vx)n+diag (Vx)Quvu

+ diag (Vx)B'2l− lk + qk , (A4)

1H
1x

=−l� =Q1x+S1u+S2(diag n)Vx+V' (diag n)S'2x+V'(diag n)R2(diag v)Vx

+ V'(diag n)Q'uvu+Q5w+V'(diag n)Q4w+A'l+V'(diag n)B'2l. (A5)

Equations (A3) and (A4) yield:

u=−(R1 −QuvR−1
2 Q'uv )−1[(S'1 −QuvR−1

2 S'2 )x+(B'1 −QuvR−1
2 B'2 )l

+ (Q3 −QuvR−1
2 Q4)w+QuvR−1

2 diag (Vx)−1(lk − qk )], (A6)

diag (Vx)n=−(R2 −Q'uvR−1
1 Quv )−1[(S'2 −Q'uvR−1

1 S'1 )x+(B'2 −Q'uvR−1
1 B'1 )l

+ (Q4 −Q'uvR−1
1 Q3)w−diag (Vx)−1(lk − qk )]. (A7)

Substituting equations (A6) and (A7) into equations (6) and (A5) yields

ẋ=Anx−Rnl+Qdw+Z1 diag (Vx)−1(lk − qk ), k=1, 2, . . . , nn , (A8)

l� =Qnx−A'nl+Qsw−Z2 diag (Vx)−1(lk − qk ), k=1, 2, . . . , nn , (A9)

where the matrices An , Rn , Qd , Qs and Qn are as defined in the text, and the matrices Z1,
and Z2 are defined as follows:

Z1 =−B1(R1 −QuvR−1
2 Q'uv )−1QuvR−1

2 +B2(R2 −Q'uvR−1
1 Quv )−1,

Z2 =−S1(R1 −QuvR−1
2 Q'uv )−1QuvR−1

2 +S2(R2 −Q'uvR−1
1 Quv )−1 +V diag n.

 1
None of the constraints (A1) is active. This is the case of constraints satisfaction in which

it is convenient to write

lk = qk =0, k=1, 2, . . . , nn . (A10)

Due to equation (A10), equations (A8) and (A9) become

ẋ=Anx−Rnl+Qdw, l� =−Qnx−A'nl−Qsw. (A11)
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One can introduce the vector l(t) in the form [15]

l(t)=Pn (t)x(t)+ rn (t). (A12)

Substituting equation (A12) into equations (A11) yields

−P� n =PnAn +A'n −PnRnPn +Qn , ṙn =(A'n +PnRn )rn −Qww, (A13)

where Qw =PnQd +Qs . If either (An , B1) or (B1, B2) is a stabilize pair and (An , Q1/2
n ) is

detectable, the solution of the Riccati equation (A13) tends to a constant matrix as in
equation (11), and the vector rn (t) is then given by [15]

rn (t)= lim
T:a g

T− t

0

eAcnsQww(t+ s) ds. (A14)

If the preview time is quite sufficient the last equation can be rewritten:

rn (t)=g
tprv

0

eAcnsQww(t+ s) ds. (A15)

In this case the control forces are given in equations (9) and (10), where diag Vx.n replaces
go in (10). This also completes the proof of Theorem 1.

 

One of the constraints (A1) is active. For example, if the first constraint is active, it
means that it can be set to either a minimum or maximum limiting value: i.e. l1$ 0 and
l2 = l3 = · · ·= lnn

=0, or q1$ 0, q2 = q3 = · · ·= qnn
=0, k=1, 2, . . . , nn =0. Strictly

speaking, either Hl1 =0 and n1 = n1min or Hq1 =0 and n1 = n1max. Here, the optimum values
of the forcing inputs are derived as functions of the new system structure. Also, the
remaining inactive constraints of equation (A1) are to be determined from equation (10).
From equation (A7), one gets

lk − qk =diag (Vx)[(S'2 −Q'unR−1
1 S'1 )x+(B'2 −Q'uvR−1

1 B'1 )l

+ (R2 −Q'uvR−1
1 Quv )diag n.V+(Q4 −Q'uvR−1

1 Q3)w]. (A16)

If one considers the equalities

(V' diag n(B'2 −QuvR−1
1 B'1 ))

= (B2 −B1(R1 −QuvR−1
2 Q'uv )QuvR−1

2 (R2 −Q'uvR−1
1 Quv ) diag n.V),

S1R−1
1 Quv diag n.V=S1(R1 −QuvR−1

2 Q'uv )−1QuvR−1
2 (R2 −Q'uvR−1

1 Quv ) diag nV,

and substitutes equation (A16) into equations (A8) and (A9), one finds

ẋ=Am (n)x−Rml+Qrw, l� =−Qm (n)x−A'm (n)l−Qu (n)w, (A17)

where the matrices Am (n), Rm , Qr , Qu (n), and Qm (n) are as defined in the text. The solution
of the last two point boundary value problem can be sought by assuming that [15]

l(t)=Pm (t)x(t)+ rm (t). (A18)

Due to equation (A18), equations (A17) yield

−P� m =PmAm (n)+A'm (n)Pm −PmRmPm +Qm (n), ṙm =(A'm (n)+PmRm )rm −Qg (n)w,

(A19)
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where Qg (n)=PmQr +Qu (n). If either (Am (n), B1) or (Am (n), B2) is a stabilizable pair and
(Am (n), Q1/2

m (n)) is detectable, the solution of the Riccati equation (A19) tends to a constant
matrix as in equation (17), and the vector rm (t), for a sufficiently long preview time, can
be calculated as

rm (t)=g
tprv

0

eAcm (n)sQg (n)w(t+ s) ds. (A20)

The fully active control forces are then given by equation (16), and the components of
semi-active damping coefficients that satisfy all the constraints can be calculated as follows:

diag (V	 x)ñ= g̃o . (A21)

Note here that ñ is a diagonal matrix having on its diagonal damping coefficients
corresponding to the remaining inactive equality constraints and g̃o are their
correspondents to be obtained from equation (10). In fact, Case II represents many cases
of combinations of active and inactive equality constraints. Finally, the proof of sufficiency
for the problem is lengthy but not difficult to be validated.


